Q.P. Code:16CE2005												R16	
Reg. I	No.												
SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS)													
M.Tech I Year I Semester Regular & Supplementary Examinations February 2018 ADVANCED PRESTRESSED CONCRETE (Structural Engineering)													
Time: 3	Time: 3 hours Max. Mark (Answer all Five Units 5 X 12 =60 Marks)												
UNIT-I													
1	а	Explain the historical development of Prestressed concrete.											
	b	What are the advantages of prestressed concrete?											6M
OR													
2	a	Explai	n the		6M								
	b	Explain the Lee-McCall system with a neat sketch.											6M
UNIT-II													
3 A prestressed concrete beam, 200 mm wide and 300 mm d with wires(area=320mm ²) located at a constant eccentric carrying an initial stress of 1000 N/mm ² . The span of th calculate the percentage loss of stress in wires if a) the beat and b) the beam is post tensioned.									ntricit of the	y of 50 mm and e beam is 10 m.	12M		

OR

A concrete beam AB of span 12 m id post-tensioned by a cable which is concentric at supports A and B and has an eccentricity of 200 mm in the mid-third span with a linear variation towards the supports. If the cable is tensioned at the jacking-end A, what should be the jacking stress in the wires if he stress at B is to be 1000 N/mm². Assume the coefficient of friction between the cable duct and concrete as 0.55 and the friction coefficient for the wave effect as 0.0015/m.

UNIT-III

5 A post tensioned pre-stressed concrete Tee beam having a flange width of 1200 mm and flange thickness of 200 mm, thickness of web being 300 mm is pre-stressed by 2000 mm² of high-tensile steel located at an effective depth of 1600 mm. If f_{ck} =40 N/mm² and f_p =1600 N/mm², estimate the ultimate flexural strength of the unbounded tee section, assuming span/depth ratio as 20 and f_{pe} =1000 N/mm².

12M

12M

6

9

10

OR

A pre-tensioned, T-section has a flange 1200 mm wide and 150 mm thick. The width and depth of the rib are 300 and 1500 mm respectively. The high-tensile steel has an area of 4700 mm² and is located at an effective depth of 1600 mm. If the characteristic cube strength of the concrete and the tensile strength of steel are 40 and 1600 N/mm², respectively, calculate the flexural strength of the T-section.

UNIT-IV

A concrete beam of rectangular section has a width of 250 mm and depth of 600 mm. the beam is pre-stressed by a parabolic cable carrying an effective force of 1000 KN. The cable is concentric at supports and has a maximum eccentricity of 100 mm at the centre of the span. The beam pans over 10 m and supports a uniformly distributed live load of 20 KN/m. assuming the density of concrete as 24 KN/m³, estimate a) the maximum principal stress developed in the section of the beam at a distance of 300 mm from the support, b) the presressing force required to nullify the shear force due to dead & live loads at the support section

OR

8 A prestressed I-section has the following properties: Area = $(55*10^3)$ mm²

Second moment of area= $(189*10^7)$ mm⁴

Statical moment about the centroid= $(468*10^4)$ mm³

Thickness of web = 50 mm

It is prestressed horizontally by 24 wires of 5 mm diameter and vertically by similar wires at 150 mm centers. All the wires carry a tensile stress of 900 N/ mm^2 . Calculate the principal stresses at the centroid when a shearing force of 80KN acts upon this section.

UNIT-V

A cylindrical prestressed concrete water tank of internal diameter 30 m is required to store water over a depth of 7.5 m. The permissible compressive stress in concrete at transfer is 13 N/ mm² and the minimum compressive stress under working pressure is 1 N/ mm². The loss ratio is 0.75. wires of 5 mm diameter with an initial stress of 1000 N/ mm² are available for circumferential winding and Freyssinet cables made up of 12 wires of 8 mm diameter stressed to 1200 N/ mm² are to be used for vertical prestressing. Design the tank walls assuming the base as fixed. The cube strength of concrete is 40 N/ mm².

OR

a. State the importance of control of deflection.b. Explain the short term deflection of un-cracked members using Mohr's theorem.

12M

6M

6M

12M

121/